Evaluation of a CO₂ Mitigation Option for California Coastal Power Plants: Using Marine Chemistry to Mitigate CO₂ and Ocean Acidification

Greg H. Rau

Institute of Marine Sciences, University of California, Santa Cruz, and Carbon Management Program, Lawrence Livermore National Laboratory rau4@llnl.gov

Thanks to CEC's EISG Program for funding

Ocean CO₂ Sequestration Options

- Physical: Deep ocean CO₂ injection (Marchetti, '77)
 issues Cost of CO₂ capture and transport; Bio effects
- Biological: Ocean fertilization (Martin, '90) issues Bio and eco effects; Mitigation effectiveness?
- Chemical:
 - Alkalinity addition (Kheshgi '95; House et al. '07; Harvey '08)
 - > Enhanced limestone weathering (Rau et al. '99-'07)
- Other? E.g., crop waste stored in marine anoxic zones (Metzger and Benford, 2001)

Using Aqueous Chemistry to Capture/Store CO₂

Excess CO₂ readily reacts with:

1) water to form dissolved bicarbonate:

$$CO_2 + H_2O < ----> H_2CO_3 < ----> 2H^+ + 2HCO_3^-$$

2) water and dissolved carbonate to form dissolved bicarbonate:

$$CO_2 + 2H_2O + CO_3^{2-} < ---> 2H^+ + 2HCO_3^{-}$$

3) water and carbonate minerals to form bicarbonate:

$$CO_2 + H_2O + CaCO_{3(s)} < ---> Ca^{2+} + 2HCO_3^{-1}$$

With carbonate-rich water covering 70% of the planet, it is therefore not surprising that reactions 1-3 play the dominant role in modulating atmospheric CO_2 . 1/3 to 1/2 of all anthropogenic CO_2 has thus far been consumed by reactions 1 and 2. However, there is a severe penalty for using reactions 1 and 2 for ocean CO_2 mitigation --->

Direct Ocean Absorption of CO₂ Causes Ocean Acidification

$$CO_2 + H_2O < --> H_2CO_3 < --> H^+ + HCO_3^- < --> 2 H^+ + CO_3^2$$

(% of initial CO_2): (+ 9 %) (+151 %) (- 60%)

(Caldeira and Wickett, 2003, Nature 425:365)

Therefore unlike climate effects, ocean acidification is guaranteed under BAU emissions scenarios

The consequences of increasing ocean acidity

- Significant impacts observed on calcifying organisms such as corals and shellfish
- Significant potential for impacts on marine ecosystems and biogeochemistry that are essential to a habitable planet, i.e. food and O₂ production, carbon and nitrogen cycling, etc.

O. Hoegh-Guldberg, et al., Science, December 2007

However, Reaction with Mineral Carbonates Reduces Ocean Acidification

Rather than:

$$CO_2 + H_2O ----> H_2CO_3 ----> (2H^{\dagger} + 2HCO_3^{-})$$
 (reactions 1 and 2)

Acid generation is avoided using carbonate minerals:

 $CO_2 + H_2O + CaCO_{3(s)}$ ---> Ca^{2+} + 2HCO₃ (reaction 3) mimics natural CO_2 absorption via limestone weathering, hence the term accelerated weathering of limestone - AWL

Therefore, because in many locations water (seawater) and carbonate minerals (limestone) are abundant and cheap, why not employ reaction 3 to mitigate point source CO_2 where cost effective to do so? Wet limestone scrubbing already used for SO_2 mitigation.

Proof of Concept: EISG/CEC funded project

Bench-scale evaluation of AWL concept at UCSC's Long Marine Laboratory

Adaptation of commercial seawater calcium/alkalinity generator to test effectiveness and safety of wet carbonate scrubbing of a 10% CO_2 stream:

Experimental Scheme:

Project results:

□ Up to 97% removal CO₂ stream depending on water/gas flow ratio:

CO₂ Conversion to Calcium Bicarbonate: Single Reactor

Conclusion: Single reactor effective in CO_2 --> HCO_3 - conversion, but not very effective in CO_2 --> $Ca(HCO_3)_2$ conversion

CO₂ Conversion to Calcium Bicarbonate: Second Reactor or Long Incubation

Conclusion: Greater exposure to carbonate = greater CO_2 --> $Ca(HCO_3)_2$ conversion

CO₂ Conversion to Calcium Bicarbonate: Permanence?

Conclusion: 1) Little reversal of CO_2 --> $Ca(HCO_3)_2$ even with full air equilibration

2) No chemical precipitation of carbonate

Effluent Effects on Downstream Biota - Obelia sp.

Added Alkalinity Source:		# Hydranths, Percent change	# Buds, Percent change	# Gonangia (initial = 0)	# Total polyps, Percent change
None	Mean=	98.9	168.2	0.0	121.5
None					_
	S.D.=	135.0	78.2	0.0	112.5
Coral	Mean=	101.4	275.0*	0.8	144.2
	S.D.=	58.3	67.3	0.5	55.5
Limestone	Mean=	144.1	182.9	4.0	212.6
	S.D.=	99.1	33.2	4.3	62.3

^{*} statistically significant

Conclusion: Neutral to positive effects evident for Obelia sp.

Safety of AWL effluent?

In-home tank CO₂ + carbonate reactors routinely used to add alkalinity to

By utilizing a box design, we're able to make the best use of space under an aquarium. The RX-1 is large enough to hold an entire container of Carib

Unlike competing products, you won't need a separate feed pump with the RX-1. The Eheim 1250 is powerful enough to serve double duty.

Sea ARM media (8 lbs.)!

saltwater aquariums!

Implications of study

- Could limestone + seawater scrubbing of coastal CO₂ point sources, e.g., Calif. coastal power plants, be used to safely capture and sequester CO₂?
- Remaining questions:
 - 1) How much CO₂ mitigation?
 - 2) At what cost?
 - 3) How safe and with what environmental impact?
 - 4) Optimum reactor designs?

McDermott's limestone CO₂ scrubber concept

William Downs and Hamid Sarv. 2002. CO₂ CAPTURE AND SEQUESTRATION BY A LIMESTONE LAGOON SCRUBBER. McDermott Technology, Inc., Alliance, OH. 2nd Ohio CO₂ Reduction, Capture & Sequestration Forum, Ohio University, April 26 2002

Limestone availability vs. CA coastal power plant locations

CALIFORNIA STATEWIDE POWER PLANTS Operational .1 MW and Above Legend BIOMASS DIGESTER GAS LANDFILL GAS OIL/GAS **Major Limestone Deposits/Mines** RMA ENERGY COMMISSION AS ASSESSMENT & FACILITIES SITING DIMISION GRAPHY LINET

E.g., Moss Landing 2.5 GW power plant complex - largest single CO₂ emitted in state?

On site seawater availability

- □ 18 California coastal power plants already pump approx
 1.4 x 10¹⁰ tonnes of seawater water per year for cooling.
- □ Assuming that 1 tonne of CO₂ can be absorbed and converted in 5,000 tonnes of seawater (extrapolated from lab obs), then about 2.8 million tonnes of CO₂/yr could be mitigated = 23% of annual coastal power plant emissions mitigated with "free" seawater.
- More CO₂ mitigation could be had with with additional seawater pumping, at added cost.

AWL Economics

- Estimated cost per tonne CO₂ sequestered, assuming coastal location:
 - Limestone -

```
    2.3 tonnes @ $4/tonne = $ 9.20
    crushing from 10 cm to 1cm = $ 1.45
```

transport 100 km by rail = \$ 8.00

Water -

◆ 10⁴ m³, pumped 2 vertical meters = \$ 7.57

Capital and maintenance = \$2.50

TOTAL:

\$ 29/tonne CO₂

Compared to >\$80/tonne for amine capture + geologic storage of CO₂ (CCS) from a conventional power plant (MIT, 2009)

Optimum AWL economics

Estimated cost per tonne CO₂ sequestered, assuming coastal location:

Limestone -

```
2.3 tonnes @ $4/tonne = $ 9.20 | use free, nearby
crushing from 10 cm to 1cm = $ 1.45 | waste limestone
transport 100 km by rail = $ 8.00 |
```

- Water -
- ◆ 10⁴ m³, pumped 2 vertical meters = \$\frac{10^4}{57.57}\$ use cooling water
- Capital and maintenance = \$ 2.50

\$29/tonne CO₂

TOTAL: <\$3/tonne CO₂

Advantages of AWL:

- Abundant and cheap reactants:
 - Limestone carbonates = $6x10^7$ Gt C, fossil fuels = $4x10^3$ Gt C; H_20 - ocean = $1.4x10^{18}$ m³
- Relatively innocuous waste products:
 - Primarily Ca²⁺+ and HCO₃⁻ in solution; Avoids risk inherent with molecular CO₂; benefits to marine biota
- Not energy- or technology-intensive:
 - Does not require separate, costly CO₂ capture/concentration
 - Modify existing (seawater) FGD scrubbing technology
- Retrofittable to existing plants, and applicable to developing countries
- Relatively inexpensive
 - 10-20% US power plant emissions mitigated at <\$30/ tonne CO₂

Impacts & Issues Needing Further Research:

- Local availability of limestone and water limits application
 - > could be offset by piping CO₂ to favorable AWL sites
 - use inland saline aquifer or oil/water reservoirs?
- Marine biological impacts
 - net beneficial?
 - trace contaminants from flue gas or limestone?
- Environmental, transportation, and economic impacts due to increased limestone mining/transport.
- What are optimum reactor designs and regional, national, and global markets? - R&D needed

Air CO₂ capture with "Juiced" AWL (JAWL)

Add renewable DC electricity to AWL chemistry to allow:

□ Production of air CO₂ absorbing solutions while generating "super green" hydrogen

≥ 22 tonnes CO₂ absorbed per acidic anode
 tonne H₂ produced

thus, novel production of carbon-negative hydrogen

Addition of alkalinity to seawater neutralizes or offsets ocean acidity

CaCO₃ as well as H_2O split Net reaction: $CaCO_3 + H_2O + CO_2 + DC ---> 0.5O_2 + H_2 + Ca(HCO_3)_{2aq}$ Net gain of $Ca(OH)_2$ leads to net gain of CO_2 at pH 6-9

Summary:

- □ Simple seawater+limestone scrubbing shown to be effective in removing up to 97% of point source CO₂.
- □ No negative downstream environmental effects observed (so far).
- In many coastal locations AWL would appear to be significantly less expensive than CCS.
- Using an electrified version of AWL, air capture of CO₂ has been demonstrated.
- All of the preceding need to be evaluated with larger scale R&D. Partners and funding sought.